Comultiplication modules over a pullback of Dedekind domains
نویسندگان
چکیده
منابع مشابه
Projective Modules over Dedekind Domains
In these notes we will first define projective modules and prove some standard properties of those modules. Then we will classify finitely generated projective modules over Dedekind domains Remark 0.1. All rings will be commutative with 1. 1. Projective modules Definition 1.1. Let R be a ring and let M be an R-module. Then M is called projective if for all surjections p : N → N ′ and a map f : ...
متن کاملPrimary Decomposition of Modules over Dedekind Domains Using Gröbner Bases
In [6] was proved that if R is a principal ideal domain and N ⊂ M are submodules of R[x1, . . . , xn], then the primary decomposition for N in M can be computed using Gröbner bases. In this paper we extend this result to Dedekind domains. The procedure that computed the primary decomposition is illustrated with an example.
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولFinitely Generated Modules over Pullback Rings
The purpose of this paper is to outline a new approach to the classii-cation of nitely generated indecomposable modules over certain kinds of pullback rings. If R is the pullback of two hereditary noetherian serial rings over a common semi{simple artinian ring, then this classiication can be divided into the classiica-tion of indecomposable artinian modules and those modules over the coordinate...
متن کاملGröbner Basis and Indecomposable Modules over a like Dedekind Ring
Using Gröbner Basis, we introduce a general algorithm to determine the additive structure of a module, when we know about it using indirect information about its structure. We apply the algorithm to determine the additive structure of indecomposable modules over ZCp, where Cp is the cyclic group of order a prime number p, and the p−pullback {Z→ Zp ← Z} of Z⊕Z.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Czechoslovak Mathematical Journal
سال: 2009
ISSN: 0011-4642,1572-9141
DOI: 10.1007/s10587-009-0078-3